Lecture 2

Formalising Problems

Problems as Functions

Problems as Functions

A problem for us would always mean computing a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, whose

Problems as Functions

A problem for us would always mean computing a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, whose input and output are finite length binary strings.

Problems as Functions

A problem for us would always mean computing a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, whose input and output are finite length binary strings.

We can express all problems as computing a function using binary encoding.

Problems as Functions

A problem for us would always mean computing a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, whose input and output are finite length binary strings.

We can express all problems as computing a function using binary encoding.

Examples:

Problems as Functions

A problem for us would always mean computing a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, whose input and output are finite length binary strings.

We can express all problems as computing a function using binary encoding.

Examples:

PRIMES: Given an integer x, decide if x is a prime.

Problems as Functions

A problem for us would always mean computing a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, whose input and output are finite length binary strings.

We can express all problems as computing a function using binary encoding.

Examples:

PRIMES: Given an integer x, decide if x is a prime.
$f_{\text {PRIMES }}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that

Problems as Functions

A problem for us would always mean computing a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, whose input and output are finite length binary strings.

We can express all problems as computing a function using binary encoding.

Examples:

PRIMES: Given an integer x, decide if x is a prime.
$f_{\text {PRIMES }}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that

$$
f_{\text {PRIMES }}(x)= \begin{cases}1, & \text { if } \operatorname{dec}(x) \text { is a prime number } \\ 0, & \text { if } \operatorname{dec}(x) \text { is not a prime number }\end{cases}
$$

Problems as Functions

Problems as Functions

FACTOR: Given integers a and b, decide if a is a factor of b.

Problems as Functions

FACTOR: Given integers a and b, decide if a is a factor of b.
$f_{\text {FACTOR }}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that

Problems as Functions

FACTOR: Given integers a and b, decide if a is a factor of b.
$f_{\text {FACTOR }}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that

$$
f_{F A C T O R}(x)= \begin{cases}1, & \text { if } x \text { is a binary encoding of } a \& b \text { s.t. } a \text { divides } b \\ 0, & \text { if } x \text { is a binary encoding of } a \& b \text { s.t. } a \text { does not divide } b\end{cases}
$$

Problems as Functions

FACTOR: Given integers a and b, decide if a is a factor of b.
$f_{\text {FACTOR }}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that
How can we encode two numbers
in one binary string?

$$
f_{F A C T O R}(x)= \begin{cases}1, & \text { if } x \text { is a binary encoding of } a \& b \text { s.t. } a \text { divides } b \\ 0, & \text { if } x \text { is a binary encoding of } a \& b \text { s.t. } a \text { does not divide } b\end{cases}
$$

Problems as Functions

FACTOR: Given integers a and b, decide if a is a factor of b.

$$
\begin{aligned}
& f_{\text {FACTOR }}:\{0,1\}^{*} \rightarrow\{0,1\}^{*} \text { such that } \begin{array}{l}
\text { How can we encode two numbers } \\
\text { in one binary string? }
\end{array} \\
& f_{\text {FACTOR }}(x)= \begin{cases}1, & \text { if } x \text { is a binary encoding of } a \& b \text { s.t. } a \text { divides } b \\
0, & \text { if } x \text { is a binary encoding of } a \& b \text { s.t. } a \text { does not divide } b\end{cases}
\end{aligned}
$$

Good Encoding Practices:

Problems as Functions

FACTOR: Given integers a and b, decide if a is a factor of b.
$f_{\text {FACTOR }}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that
How can we encode two numbers
in one binary string?

$$
f_{\text {FACTOR }}(x)= \begin{cases}1, & \text { if } x \text { is a binary encoding of } a \& b \text { s.t. } a \text { divides } b \\ 0, & \text { if } x \text { is a binary encoding of } a \& b \text { s.t. } a \text { does not divide } b\end{cases}
$$

Good Encoding Practices:

- If $p \neq q$, then $\langle p\rangle \neq\langle q\rangle$

Problems as Functions

FACTOR: Given integers a and b, decide if a is a factor of b.
$f_{\text {FACTOR }}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that
How can we encode two numbers
in one binary string?

$$
f_{F A C T O R}(x)= \begin{cases}1, & \text { if } x \text { is a binary encoding of } a \& b \text { s.t. } a \text { divides } b \\ 0, & \text { if } x \text { is a binary encoding of } a \& b \text { s.t. } a \text { does not divide } b\end{cases}
$$

Good Encoding Practices:

- If $p \neq q$, then $\langle p\rangle \neq\langle q\rangle$, where $\langle p\rangle$ denotes binary encoding of p.

Problems as Functions

FACTOR: Given integers a and b, decide if a is a factor of b.
$f_{\text {FACTOR }}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that
How can we encode two numbers
in one binary string?

$$
f_{F A C T O R}(x)= \begin{cases}1, & \text { if } x \text { is a binary encoding of } a \& b \text { s.t. } a \text { divides } b \\ 0, & \text { if } x \text { is a binary encoding of } a \& b \text { s.t. } a \text { does not divide } b\end{cases}
$$

Good Encoding Practices:

- If $p \neq q$, then $\langle p\rangle \neq\langle q\rangle$, where $\langle p\rangle$ denotes binary encoding of p.
- Getting p from $\langle p\rangle$ must be "easy".

Problems as Functions

FACTOR: Given integers a and b, decide if a is a factor of b.
$f_{\text {FACTOR }}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that
How can we encode two numbers
in one binary string?

$$
f_{F A C T O R}(x)= \begin{cases}1, & \text { if } x \text { is a binary encoding of } a \& b \text { s.t. } a \text { divides } b \\ 0, & \text { if } x \text { is a binary encoding of } a \& b \text { s.t. } a \text { does not divide } b\end{cases}
$$

Good Encoding Practices:

- If $p \neq q$, then $\langle p\rangle \neq\langle q\rangle$, where $\langle p\rangle$ denotes binary encoding of p.
- Getting p from $\langle p\rangle$ must be "easy".
- Every binary string must correspond to some object.

Problems as Functions

FACTOR: Given integers a and b, decide if a is a factor of b.
$f_{\text {FACTOR }}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that
How can we encode two numbers
in one binary string?

$$
f_{F A C T O R}(x)= \begin{cases}1, & \text { if } x \text { is a binary encoding of } a \& b \text { s.t. } a \text { divides } b \\ 0, & \text { if } x \text { is a binary encoding of } a \& b \text { s.t. } a \text { does not divide } b\end{cases}
$$

Good Encoding Practices:

- If $p \neq q$, then $\langle p\rangle \neq\langle q\rangle$, where $\langle p\rangle$ denotes binary encoding of p.
- Getting p from $\langle p\rangle$ must be "easy".
- Every binary string must correspond to some object.
- $\langle p\rangle$ shouldn't be too long.

Encoding Integer Tuples/Pairs

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:
Method 1:

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:

- Convert a and b into binary and concatenate them.

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:

- Convert a and b into binary and concatenate them.

For instance,

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:

- Convert a and b into binary and concatenate them.

For instance,

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:

- Convert a and b into binary and concatenate them.

For instance,

$$
(3,5) \rightarrow 11101
$$

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:

- Convert a and b into binary and concatenate them.

For instance,

$$
\begin{equation*}
(3,5) \rightarrow 11101 \tag{14,1}
\end{equation*}
$$

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:

- Convert a and b into binary and concatenate them.

For instance,

$$
(3,5) \rightarrow 11101 \quad(14,1) \rightarrow 11101
$$

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:

- Convert a and b into binary and concatenate them.

For instance,

$$
(3,5) \rightarrow 11101 \quad(14,1) \rightarrow 11101
$$

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:

- Convert a and b into binary and concatenate them.

For instance,

$$
(3,5) \rightarrow 11101 \quad(14,1) \rightarrow 11101
$$

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:
Method 1: \mathbf{Y}

- Convert a and b into binary and concatenate them.

For instance,

$$
(3,5) \rightarrow 11101 \quad(14,1) \rightarrow 11101
$$

Method 2:

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:
Method 1: \mathbf{Y}

- Convert a and b into binary and concatenate them.

For instance,

$$
(3,5) \rightarrow 11101 \quad(14,1) \rightarrow 11101
$$

Method 2:

- Convert a into binary and further replace each 0 by 00 and 1 by 11 .

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:
Method 1:

- Convert a and b into binary and concatenate them.

For instance,

$$
(3,5) \rightarrow 11101 \quad(14,1) \rightarrow 11101
$$

Method 2:

- Convert a into binary and further replace each 0 by 00 and 1 by 11 . Do the same for b.

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:

- Convert a and b into binary and concatenate them.

For instance,

$$
(3,5) \rightarrow 11101 \quad(14,1) \rightarrow 11101
$$

Method 2:

- Convert a into binary and further replace each 0 by 00 and 1 by 11 . Do the same for b.
- Concatenate both the binary strings with a 01 in the middle.

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:

- Convert a and b into binary and concatenate them.

For instance,

$$
(3,5) \longrightarrow 11101 \quad(14,1) \rightarrow 11101
$$

Method 2:

- Convert a into binary and further replace each 0 by 00 and 1 by 11 . Do the same for b.
- Concatenate both the binary strings with a 01 in the middle.

For instance,

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:

- Convert a and b into binary and concatenate them.

For instance,

$$
(3,5) \rightarrow 11101 \quad(14,1) \rightarrow 11101
$$

Method 2:

- Convert a into binary and further replace each 0 by 00 and 1 by 11 . Do the same for b.
- Concatenate both the binary strings with a 01 in the middle.

For instance,

$$
(3,5)
$$

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:

- Convert a and b into binary and concatenate them.

For instance,

$$
(3,5) \rightarrow 11101 \quad(14,1) \rightarrow 11101
$$

Method 2:

- Convert a into binary and further replace each 0 by 00 and 1 by 11 . Do the same for b.
- Concatenate both the binary strings with a 01 in the middle.

For instance,

$$
(3,5) \rightarrow 111101110011
$$

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:

- Convert a and b into binary and concatenate them.

For instance,

$$
(3,5) \rightarrow 11101 \quad(14,1) \rightarrow 11101
$$

Method 2:

- Convert a into binary and further replace each 0 by 00 and 1 by 11 . Do the same for b.
- Concatenate both the binary strings with a 01 in the middle.

For instance,

$$
(3,5) \rightarrow 111101110011
$$

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:

- Convert a and b into binary and concatenate them.

For instance,

$$
(3,5) \rightarrow 11101 \quad(14,1) \rightarrow 11101
$$

Method 2:

- Convert a into binary and further replace each 0 by 00 and 1 by 11 . Do the same for b.
- Concatenate both the binary strings with a 01 in the middle.

For instance,

$$
(3,5) \rightarrow 111101110011
$$

$(4,2) \longrightarrow 110000011100$

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:

- Convert a and b into binary and concatenate them.

Different pairs have same encoding
For instance,

$$
(3,5) \rightarrow 11101 \quad(14,1) \rightarrow 11101
$$

Method 2:

- Convert a into binary and further replace each 0 by 00 and 1 by 11 . Do the same for b.
- Concatenate both the binary strings with a 01 in the middle.

For instance,

$$
(3,5) \longrightarrow 111101110011
$$

$(4,2) \longrightarrow 110000011100$

Search vs Decision Problem

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform that no solutions exist.

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform that no solutions exist. For instance,

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform that no solutions exist. For instance,

SEARCH_PATH: Given a graph G and vertices $u, v \in G$, find a path from u to v or inform if no such paths exist.

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform that no solutions exist. For instance,

SEARCH_PATH: Given a graph G and vertices $u, v \in G$, find a path from u to v or inform if no such paths exist.

Decision problems are computational problems where we have to decide whether a solution exists.

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform that no solutions exist. For instance,

SEARCH_PATH: Given a graph G and vertices $u, v \in G$, find a path from u to v or inform if no such paths exist.

Decision problems are computational problems where we have to decide whether a solution exists. For instance,

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform that no solutions exist. For instance,

SEARCH_PATH: Given a graph G and vertices $u, v \in G$, find a path from u to v or inform if no such paths exist.

Decision problems are computational problems where we have to decide whether a solution exists. For instance,

DEC_PATH: Given a graph G and vertices $u, v \in G$, decide if a path from u to v exist.

Search vs Decision Problem

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:

1. Solve SEARCH_PATH on (G, u, v).

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:

1. Solve SEARCH_PATH on (G, u, v).
2. Answer Yes or No depending on the answer from the 1st step.

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:

1. Solve SEARCH_PATH on (G, u, v).
2. Answer Yes or No depending on the answer from the 1 st step.

Observation:

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:

1. Solve SEARCH_PATH on (G, u, v).
2. Answer Yes or No depending on the answer from the 1st step.

Observation: If SEARCH_PATH is polynomial-time solvable, then so is DEC_PATH.

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:

1. Solve SEARCH_PATH on (G, u, v).
2. Answer Yes or No depending on the answer from the 1 st step.

Observation:

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:

1. Solve SEARCH_PATH on (G, u, v).
2. Answer Yes or No depending on the answer from the 1st step.

Observation: If DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:

1. Solve SEARCH_PATH on (G, u, v).
2. Answer Yes or No depending on the answer from the 1st step.

Observation: If DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

We focus on decision problems because:

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:

1. Solve SEARCH_PATH on (G, u, v).
2. Answer Yes or No depending on the answer from the 1st step.

Observation: If DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

We focus on decision problems because:

- They are mathematically simple.

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:

1. Solve SEARCH_PATH on (G, u, v).
2. Answer Yes or No depending on the answer from the 1st step.

Observation: If DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

We focus on decision problems because:

- They are mathematically simple.
- Lower bounds for decision problems implies lower bounds for search problems.

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:

1. Solve SEARCH_PATH on (G, u, v).
2. Answer Yes or No depending on the answer from the 1st step.

Observation: If DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

We focus on decision problems because:

- They are mathematically simple.
- Lower bounds for decision problems implies lower bounds for search problems.

Decision Problems as Boolean Functions as

Languages

Decision Problems as Boolean Functions as

Languages

A boolean function is a function of the form $f:\{0,1\}^{*} \rightarrow\{0,1\}$.

Decision Problems as Boolean Functions as

Languages

A boolean function is a function of the form $f:\{0,1\}^{*} \rightarrow\{0,1\}$.
A language is a subset of $\{0,1\}^{*}$.

Decision Problems as Boolean Functions as

Languages

A boolean function is a function of the form $f:\{0,1\}^{*} \rightarrow\{0,1\}$.
A language is a subset of $\{0,1\}^{*}$.
Note: Decision problems can be posed as boolean functions or as languages.

Decision Problems as Boolean Functions as

Languages

A boolean function is a function of the form $f:\{0,1\}^{*} \rightarrow\{0,1\}$.
A language is a subset of $\{0,1\}^{*}$.
Note: Decision problems can be posed as boolean functions or as languages.

Example:

Decision Problems as Boolean Functions as

Languages

A boolean function is a function of the form $f:\{0,1\}^{*} \rightarrow\{0,1\}$.
A language is a subset of $\{0,1\}^{*}$.
Note: Decision problems can be posed as boolean functions or as languages.

Example:

FACTOR: Given integers a and b, decide if a is a factor of b.

Decision Problems as Boolean Functions as

Languages

A boolean function is a function of the form $f:\{0,1\}^{*} \rightarrow\{0,1\}$.
A language is a subset of $\{0,1\}^{*}$.
Note: Decision problems can be posed as boolean functions or as languages.

Example:

FACTOR: Given integers a and b, decide if a is a factor of b.

$$
f_{\text {FACTOR }}:\{0,1\}^{*} \rightarrow\{0,1\} \text { such that } \ldots
$$

Decision Problems as Boolean Functions as

Languages

A boolean function is a function of the form $f:\{0,1\}^{*} \rightarrow\{0,1\}$.
A language is a subset of $\{0,1\}^{*}$.
Note: Decision problems can be posed as boolean functions or as languages.

Example:

FACTOR: Given integers a and b, decide if a is a factor of b.
$f_{\text {FACTOR }}:\{0,1\}^{*} \rightarrow\{0,1\}$ such that \ldots
$F A C T O R=\{\langle a, b\rangle \mid a$ is a factor of $b\}$

