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Formalising Problems
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A problem for us would always mean computing a function f: {0,1}* — {0,1}*, whose

input and output are finite length binary strings.

We can express all problems as computing a function using binary encoding.

Examples:

PRIMES: Given an integer x, decide if x is a prime.
Jprives 10,11 — {0,1}* such that

1, it dec(x) is a prime number

JprivEs(X) = {

0, if dec(x) is not a prime number
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FACTOR: Given integers a and b, decide if a is a factor of b.

fFACTOR : {0,1 }>1< N {O,l }>x< such that How can we encoode two numbers
— —  ln one biwargj string?

1, if xisabinary eoding of a & b s.t. a divides b

JracTor(X) = {O,

if x is a binary encoding of a & b s.t. a does not divide b

Good Encoding Practices:
e |f p #£ g, then (p) # (q), where (p) denotes binary encoding of p.

e Getting p from (p) must be “easy”.

® Every binary string must correspond to some object.

® (p) shouldn’t be too long.
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Search problems are computational problems where we have to find a solution or inform

that no solutions exist. For instance,

SEARCH_PATH: Given a graph G and vertices u,v € G, find a path from u to v or inform

if no such paths exist.
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Decision Problems as Boolean Functions as
Languages

A boolean function is a function of the form f: {0,1}* — {0,1}.

A language is a subset of {0,1}*.

Note: Decision problems can be posed as boolean functions or as languages.

Example:

FACTOR: Given integers a and b, decide if a is a factor of b.

freacror = 10,11 — {0,1} such that ...

FACTOR = {{a,b) | a is a tactor of b}



