Lecture 2

Formalising Problems

Problems as Functions

Problems as Functions

A problem for us would always mean computing a function f: {0,1}* — {0,1}%*, whose

Problems as Functions

A problem for us would always mean computing a function f: {0,1}* — {0,1}*, whose

input and output are finite length binary strings.

Problems as Functions

A problem for us would always mean computing a function f: {0,1}* — {0,1}*, whose

input and output are finite length binary strings.

We can express all problems as computing a function using binary encoding.

Problems as Functions

A problem for us would always mean computing a function f: {0,1}* — {0,1}*, whose

input and output are finite length binary strings.

We can express all problems as computing a function using binary encoding.

Examples:

Problems as Functions

A problem for us would always mean computing a function f: {0,1}* — {0,1}*, whose

input and output are finite length binary strings.

We can express all problems as computing a function using binary encoding.

Examples:

PRIMES: Given an integer x, decide if x is a prime.

Problems as Functions

A problem for us would always mean computing a function f: {0,1}* — {0,1}*, whose

input and output are finite length binary strings.
We can express all problems as computing a function using binary encoding.

Examples:

PRIMES: Given an integer x, decide if x is a prime.
Jprives 10,11 — {0,1}* such that

Problems as Functions

A problem for us would always mean computing a function f: {0,1}* — {0,1}*, whose

input and output are finite length binary strings.

We can express all problems as computing a function using binary encoding.

Examples:

PRIMES: Given an integer x, decide if x is a prime.
Jprives 10,11 — {0,1}* such that

1, it dec(x) is a prime number

JprivEs(X) = {

0, if dec(x) is not a prime number

Problems as Functions

Problems as Functions

FACTOR: Given integers a and b, decide if a is a factor of b.

Problems as Functions

FACTOR: Given integers a and b, decide if a is a factor of b.

feactor 10,11 = {0,1}* such that

Problems as Functions

FACTOR: Given integers a and b, decide if a is a factor of b.

feactor 10,11 = {0,1}* such that

I, if xis abinary encoding of a & b s.t. a divides b

JracTor(X) = {O,

if x is a binary encoding of a & b s.t. a does not divide b

Problems as Functions

FACTOR: Given integers a and b, decide if a is a factor of b.

fFACTOR : {0,1 }>1< N {O,l }>x< such that How can we encoode two numbers
— — ln one biwargj string?

1, if xisabinary eoding of a & b s.t. a divides b

JracTor(X) = {O,

if x is a binary encoding of a & b s.t. a does not divide b

Problems as Functions

FACTOR: Given integers a and b, decide if a is a factor of b.

fFACTOR : {0,1 }>x< N {O,l }>x< such that How can we encoode two numbers
— — ln one biwargj string?

1, if xisabinary eoding of a & b s.t. a divides b

JracTor(X) = {O,

if x is a binary encoding of a & b s.t. a does not divide b

Good Encoding Practices:

Problems as Functions

FACTOR: Given integers a and b, decide if a is a factor of b.

fFACTOR : {0,1 }>x< N {O,l }>x< such that How can we encoode two numbers
— — ln one biwargj string?

1, if xisabinary eoding of a & b s.t. a divides b

JracTor(X) = {O,

if x is a binary encoding of a & b s.t. a does not divide b

Good Encoding Practices:

® If p # g, then (p) # (q)

Problems as Functions

FACTOR: Given integers a and b, decide if a is a factor of b.

fFACTOR : {0,1 }>x< N {O,l }>x< such that How can we encoode two numbers
— — ln one biwargj string?

1, if xisabinary eoding of a & b s.t. a divides b

JracTor(X) = {O,

if x is a binary encoding of a & b s.t. a does not divide b

Good Encoding Practices:

e |f p #£ g, then (p) # (q), where (p) denotes binary encoding of p.

Problems as Functions

FACTOR: Given integers a and b, decide if a is a factor of b.

fFACTOR : {0,1 }>x< N {O,l }>x< such that How can we encoode two numbers
— — ln one biwargj string?

1, if xisabinary eoding of a & b s.t. a divides b

JracTor(X) = {O,

if x is a binary encoding of a & b s.t. a does not divide b

Good Encoding Practices:
e |f p #£ g, then (p) # (q), where (p) denotes binary encoding of p.

e Getting p from (p) must be “easy”.

Problems as Functions

FACTOR: Given integers a and b, decide if a is a factor of b.

fFACTOR : {0,1 }>1< N {O,l }>x< such that How can we encoode two numbers
— — ln one biwargj string?

1, if xisabinary eoding of a & b s.t. a divides b

JracTor(X) = {O,

if x is a binary encoding of a & b s.t. a does not divide b

Good Encoding Practices:
e |f p #£ g, then (p) # (q), where (p) denotes binary encoding of p.

e Getting p from (p) must be “easy”.

® Every binary string must correspond to some object.

Problems as Functions

FACTOR: Given integers a and b, decide if a is a factor of b.

fFACTOR : {0,1 }>1< N {O,l }>x< such that How can we encoode two numbers
— — ln one biwargj string?

1, if xisabinary eoding of a & b s.t. a divides b

JracTor(X) = {O,

if x is a binary encoding of a & b s.t. a does not divide b

Good Encoding Practices:
e |f p #£ g, then (p) # (q), where (p) denotes binary encoding of p.

e Getting p from (p) must be “easy”.

® Every binary string must correspond to some object.

® (p) shouldn’t be too long.

Encoding Integer Tuples/Pairs

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:
Method 1:

e Convert a and b into binary and concatenate them.

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:
Method 1:

e Convert a and b into binary and concatenate them.

For instance,

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:
Method 1:

e Convert a and b into binary and concatenate them.

For instance,

(3,9)

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:
Method 1:

e Convert a and b into binary and concatenate them.

For instance,

(3,5 —» 11101

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:
Method 1:

e Convert a and b into binary and concatenate them.

For instance,

(3,5) — 11101 (14,1)

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:
Method 1:

e Convert a and b into binary and concatenate them.

For instance,

(3.5 —» 11101 (14,1) — 11101

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:

e Convert a and b into binary and concatenate them.
Different pairs have same encoding

For instance, / - " /

(3.5 —» 1110 (14,1) — 11101

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:)

e Convert a and b into binary and concatenate them.
Different pairs have same encoding

For instance, / - /

(3.5 —» 1110 (14,1) — 11101

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:)

e Convert a and b into binary and concatenate them.
Different pairs have same encoding

For instance, / - /

(3.5 —» 1110 (14,1) — 11101

Method 2:

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:)

e Convert a and b into binary and concatenate them.
Different pairs have same encoding

For instance, / - " /

(3.5 —» 1110 (14,1) — 11101

Method 2:

® Convert a into binary and further replace each 0 by 00 and 1 by 11.

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:)

e Convert a and b into binary and concatenate them.
Different pairs have same encoding

For instance, / - " /

(3.5 —» 1110 (14,1) — 11101

Method 2:

® Convert a into binary and further replace each 0 by 00 and 1 by 11. Do the same for b.

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:)

e Convert a and b into binary and concatenate them.
Different pairs have same encoding

For instance, / - " /

(3.5 —» 1110 (14,1) — 11101

Method 2:
® Convert a into binary and further replace each 0 by 00 and 1 by 11. Do the same for b.

® Concatenate both the binary strings with a 01 in the middle.

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:)

e Convert a and b into binary and concatenate them.
Different pairs have same encoding

For instance, / - " /

(3.5 —» 1110 (14,1) — 11101

Method 2:
® Convert a into binary and further replace each 0 by 00 and 1 by 11. Do the same for b.

® Concatenate both the binary strings with a 01 in the middle.

For instance,

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:)

e Convert a and b into binary and concatenate them.
Different pairs have same encoding

For instance, / - " /

(3.5 —» 1110 (14,1) — 11101

Method 2:
® Convert a into binary and further replace each 0 by 00 and 1 by 11. Do the same for b.

® Concatenate both the binary strings with a 01 in the middle.

For instance,

(3,5)

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:)

e Convert a and b into binary and concatenate them.
Different pairs have same encoding

For instance, / - " /

(3.5 —» 1110 (14,1) — 11101

Method 2:
® Convert a into binary and further replace each 0 by 00 and 1 by 11. Do the same for b.

® Concatenate both the binary strings with a 01 in the middle.

For instance,

(3,5) 111101110011

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:)

e Convert a and b into binary and concatenate them.
Different pairs have same encoding

For instance, / - " /

(3.5 —» 1110 (14,1) — 11101

Method 2:
® Convert a into binary and further replace each 0 by 00 and 1 by 11. Do the same for b.

® Concatenate both the binary strings with a 01 in the middle.

For instance,

(3.5) 111101110011 110000011100

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:)

e Convert a and b into binary and concatenate them.
Different pairs have same encoding

For instance, / - " /

(3.5 —» 1110 (14,1) — 11101

Method 2:
® Convert a into binary and further replace each 0 by 00 and 1 by 11. Do the same for b.

® Concatenate both the binary strings with a 01 in the middle.

For instance,

(3,5)

111101110011 (4,2) — 110000011100

Encoding Integer Tuples/Pairs

Let (a, b) be a pair of integers:

Method 1:)

e Convert a and b into binary and concatenate them.
Different pairs have same encoding

For instance, / - " /

(3.5 —» 1110 (14,1) — 11101

Method 2:]

® Convert a into binary and further replace each 0 by 00 and 1 by 11. Do the same for b.

® Concatenate both the binary strings with a 01 in the middle.

For instance,

(3,5)

111101110011 (4,2) — 110000011100

Search vs Decision Problem

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

that no solutions exist.

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

that no solutions exist. For instance,

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

that no solutions exist. For instance,

SEARCH_PATH: Given a graph G and vertices u,v € G, find a path from u to v or inform

if no such paths exist.

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

that no solutions exist. For instance,

SEARCH_PATH: Given a graph G and vertices u,v € G, find a path from u to v or inform

if no such paths exist.

Decision problems are computational problems where we have to decide whether

a solution exists.

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

that no solutions exist. For instance,

SEARCH_PATH: Given a graph G and vertices u,v € G, find a path from u to v or inform

if no such paths exist.

Decision problems are computational problems where we have to decide whether

a solution exists. For instance,

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

that no solutions exist. For instance,

SEARCH_PATH: Given a graph G and vertices u,v € G, find a path from u to v or inform

if no such paths exist.

Decision problems are computational problems where we have to decide whether

a solution exists. For instance,

DEC_PATH: Given a graph G and vertices u,v € G, decide it a path from u to v exist.

Search vs Decision Problem

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:
1. Solve SEARCH_PATH on (G, u, v).

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:
1. Solve SEARCH_PATH on (G, u, v).

2. Answer Yes or No depending on the answer from the 1st step.

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:
1. Solve SEARCH_PATH on (G, u, v).

2. Answer Yes or No depending on the answer from the 1st step.

Observation:

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:
1. Solve SEARCH_PATH on (G, u, v).

2. Answer Yes or No depending on the answer from the 1st step.

Observation: If SEARCH_PATH is polynomial-time solvable, then so is DEC_PATH.

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:
1. Solve SEARCH_PATH on (G, u, v).

2. Answer Yes or No depending on the answer from the 1st step.

Observation:

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:
1. Solve SEARCH_PATH on (G, u, v).

2. Answer Yes or No depending on the answer from the 1st step.

Observation: It DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:
1. Solve SEARCH_PATH on (G, u, v).

2. Answer Yes or No depending on the answer from the 1st step.

Observation: It DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

We tocus on decision problems because:

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:
1. Solve SEARCH_PATH on (G, u, v).

2. Answer Yes or No depending on the answer from the 1st step.

Observation: It DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

We tocus on decision problems because:

® They are mathematically simple.

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:
1. Solve SEARCH_PATH on (G, u, v).

2. Answer Yes or No depending on the answer from the 1st step.

Observation: It DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

We tocus on decision problems because:

® They are mathematically simple.

® | ower bounds for decision problems implies lower bounds for search problems.

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:
1. Solve SEARCH_PATH on (G, u, v).

2. Answer Yes or No depending on the answer from the 1st step.

Observation: It DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

We tocus on decision problems because:

® They are mathematically simple.

® | ower bounds for decision problems implies lower bounds for search problems.

Decision Problems as Boolean Functions as
Languages

Decision Problems as Boolean Functions as
Languages

A boolean function is a function of the form f: {0,1}* — {0,1}.

Decision Problems as Boolean Functions as
Languages

A boolean function is a function of the form f: {0,1}* — {0,1}.

A language is a subset of {0,1}*.

Decision Problems as Boolean Functions as
Languages

A boolean function is a function of the form f: {0,1}* — {0,1}.

A language is a subset of {0,1}*.

Note: Decision problems can be posed as boolean functions or as languages.

Decision Problems as Boolean Functions as
Languages

A boolean function is a function of the form f: {0,1}* — {0,1}.

A language is a subset of {0,1}*.

Note: Decision problems can be posed as boolean functions or as languages.

Example:

Decision Problems as Boolean Functions as
Languages

A boolean function is a function of the form f: {0,1}* — {0,1}.

A language is a subset of {0,1}*.

Note: Decision problems can be posed as boolean functions or as languages.

Example:

FACTOR: Given integers a and b, decide if a is a factor of b.

Decision Problems as Boolean Functions as
Languages

A boolean function is a function of the form f: {0,1}* — {0,1}.

A language is a subset of {0,1}*.

Note: Decision problems can be posed as boolean functions or as languages.

Example:

FACTOR: Given integers a and b, decide if a is a factor of b.

freacror = 10,11 — {0,1} such that ...

Decision Problems as Boolean Functions as
Languages

A boolean function is a function of the form f: {0,1}* — {0,1}.

A language is a subset of {0,1}*.

Note: Decision problems can be posed as boolean functions or as languages.

Example:

FACTOR: Given integers a and b, decide if a is a factor of b.

freacror = 10,11 — {0,1} such that ...

FACTOR = {{a,b) | a is a tactor of b}

